National Bus Rapid Transit Institute
Center for Urban Transportation Research - 4202 East Fowler Ave, CUT 100
Tampa, Florida 33620

Bus Rapid Transit Stations and Shelters

Presented by
Cheryl Thole, Research Associate

American Planning Association Conference – March 19-23, 2005
San Francisco, California
BRT Shelters

• Should be provided at every station and stop
• Differentiated from regular bus stops
 – convey identity and image
• Enhanced shelters and/or transit center design
 – integrated with surroundings
• Sense of permanence
• Joint-development/multi-use – TOD supportive
• Designated passenger “platform”, possibly raised
 – facilitate boarding and make boarding rapid
BRT Shelters

- Precision docking
- Should extend the full length of the platform
- Provide protection from the elements (rain, sun, snow)
- Materials
 - Durable
 - Easy to maintain
 - Vandal resistant
 - Readily available
Station Location and Spacing

• Should be far apart as compared to conventional bus service

• Will vary dependent upon the type of running way, development density, and mode of arrival

• Should be key to major passenger concentrations
 – Business districts, employment areas, universities, recreational centers
Running Way Types and Station Spacing

<table>
<thead>
<tr>
<th>Running Way Type</th>
<th>Distance (in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways and Busways</td>
<td>2,000 to 21,000 feet</td>
</tr>
<tr>
<td>Arterial Streets</td>
<td>1,000 to over 4,000 feet (Cleveland and Vancouver)</td>
</tr>
</tbody>
</table>

TCRP Report 90, Volume II
Typical BRT Station Spacing by Arrival Mode

<table>
<thead>
<tr>
<th>Main Arrival Mode</th>
<th>Spacing (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrians</td>
<td>0.25 – 0.33</td>
</tr>
<tr>
<td>Bus</td>
<td>0.5 – 1.0</td>
</tr>
<tr>
<td>Automobile</td>
<td>2.0</td>
</tr>
</tbody>
</table>

TCRP Report 90, Volume II
Passenger Amenities

- **Signage and Graphics**
 - Station identification signage
 - Transit route maps
 - Local neighborhood maps
 - Be distinguishable from conventional bus service
 - Tactile signage and audible information may also be used

- **ITS Displays and Passenger Information**
 - Real-time, variable message signs providing “next bus” and systemwide schedule delay information
Passenger Amenities

- **Street Furniture**
 - Seating and/or leaning rails
 - Trash receptacles
- **Other amenities**
 - Bicycle racks
 - Newspaper vending equipment
 - Public telephones
- **Other amenities (larger stations)**
 - Restrooms
 - Drinking fountains
 - ATMs
 - Convenience stores
 - Newsstands
Fare Collection

• Controlled Access
 – Free and Paid areas
 – Turnstiles, other control devices
 – Common in grade-separated BRT systems
• Proof of Payment
 – Passengers purchase fare beforehand and carry a pass or receipt
Safety and Security

• Visibility
 – Passengers should be able to see their surroundings
 – Passengers should be seen
 – Unobstructed views to the street or public way
 – Landscaping should not obstruct a passengers view
 – Ample lighting is essential
 – Security equipment
 • Closed-circuit television monitoring
 • Emergency call boxes
Illumination

- Adequate lighting is essential for attractiveness, safety, and security of BRT stations
- Planned in coordination with adjacent, exterior public places
- Lighting should be vandal resistant
- Open platforms
 - In the range of 5 footcandles
- Areas beneath canopies
 - 10 to 15 footcandles
Operational Planning Issues

- Platform requirements
 - Most BRT stations have low platforms
 - Low-floor vehicles
 - Some systems have high platforms
 - Quito, Curitiba
- Bypass Capabilities
 - Express buses must be able to bypass buses dwelling in stations
Platforms

- Side Platforms
 - Compatible with conventional bus door configurations
 - Tandem (opposite each other)
 - Dedicated busways with grade-separated pedestrian crossings
 - Staggered
 - At-grade busways, median arterial busways, and in most curbside operations

- Center Platforms
 - Most efficient, but rare with BRT
 - Require contra flow operations with conventional buses or nonstandard door configurations
Platforms

- Vehicle-based precision docking systems
 - Two kinds of precision docking
 - Optical guided steering (Las Vegas, Rouen)
 - Mechanically guided systems (Adelaide and Essen)
 - Accurately steer the vehicle into alignment with the platform
 - Assists in faster boarding and shorter dwell time

Las Vegas MAX
Curitiba, Brazil
Brisbane, Australia
Ottawa
Los Angeles, CA
MAX BRT, Vegas – Station Construction
Small scale stations are used in Vancouver & Leeds

Vancouver

Leeds
Boston, MA
LYNX Lymmo – Orlando, FL
Miami Busway
Rapid Bus - Oakland
Rouen, France